Vēstures aplādes

Nakajima Ki-62

Nakajima Ki-62

Nakajima Ki-62

Nakajima Ki-62 bija paredzēts cīnītājam, lai to darbinātu Daimler-Benz DB 601A dzinēja japāņu versija, kas ražota gadījumā, ja Kawasaki Ki-61 dizains neizdotos.

Kawasaki bija iegādājies tiesības būvēt dzinēju DB 601A Japānā, kur tam tika piešķirts apzīmējums Ha-40. Pēc tam viņiem (1940. gadā) tika pavēlēts konstruēt divus iznīcinātājus, kas balstīti ap šo dzinēju, smago pārtvērēju Ki-60 un vispārējo mērķi Ki-61. Līdz šim datumam Japānas armijas gaisa spēki bija atteikušies no konkursa un tā vietā pasūtīja vienu uzņēmumu katra jauna dizaina izgatavošanai, taču bija pagājis kāds laiks, kopš Kawasaki saražoja armijas iznīcinātāju.

Pēdējie trīs armijas kaujinieki (Ki-27, Ki-43 un Ki-44) bija Nakajima izstrādājumi, un tagad viņiem tika lūgts izgatavot savu dizainu cīnītājam, kas bāzēts ap Ha-40, kā rezerves daļu gadījumā Ki-61 neizdevās. Tika izveidota dizaina komanda T. Koyama vadībā, un 1941. gada laikā viņi izgatavoja dizainus gan Ki-62, gan radiālās dzinēja versijai Ki-63.

Ki-62 bija ļoti līdzīgs Kawasaki Ki-61, ar tādu pašu nožuvušu degunu, kāds bija redzams lielākajai daļai lidmašīnu ar DB 601 dzinēju (ieskaitot Bf 109). Ki-62 atšķīrās ar sagrieztu aizmugurējo fizelāžu un burbuļplates kabīni, kas būtu nodrošinājis labāku redzamību nekā Ki-61 izmantotais saliktais kabīne. Radiatoru gaisa ieplūde bija arī citā pozīcijā, tieši spārna priekšā, bet Ki-61-aiz spārna.

Kad bija skaidrs, ka Ki-61 būs veiksmīgs darbs pie Ki-62, un Ki-63 beidzās. Tā vietā Nakajima tika lūgts ražot jaunu universālu iznīcinātāju, kam būtu daudz vairāk kopīga ar sabiedroto konstrukcijām nekā ar iepriekšējām japāņu lidmašīnām, uzsverot ātrumu, aizsardzību un uguns spēku, nevis manevrēšanas spēju. T. Koyama un viņa komanda sāka darbu pie jaunā Ki-84 1942. gada sākumā, izmantojot daudzas Ki-62 izstrādātās funkcijas.


Japānas impērijas armijas gaisa dienesta kaujinieki

Viegls iznīcinātājs, kurš 1938. gadā sāka strādāt Japānas Imperiālajā armijas gaisa dienestā. Lai gan 1942. gadā tas tika uzskatīts par novecojušu, tas palika dienestā Japānas Imperiālās armijas gaisa dienestā, līdz pēdējie piemēri tika atsaukti no dienesta 1945. gadā.

Eksperimentāls iznīcinātājs, kas paredzēts Japānas impērijas armijas gaisa dienestam un paredzēts kā Kawasaki Ki-10 aizstājējs. Tas lidoja 1936. gadā, bet nekad netika ražots reālai lietošanai, jo Japānas Imperatora armijas gaisa dienests izvēlas Nakajima Ki-27.

Eksperimentāls iznīcinātājs, kas iegūts no Mitsubishi A5M nesējkuģa, kura izstrāde tika pārtraukta par labu Nakajima Ki-27.

Eksperimentāls divu dzinēju iznīcinātājs, kura izstrāde tika pārtraukta par labu Kawasaki Ki-45

Cīnītājs, kas sāka to izmantot, sāka lietot 1941. gadā un ātri kļuva par vienu no visvairāk baidītajiem japāņu kaujiniekiem, kas darbojās virs Ķīnas. Ražošana beidzās 1944. gadā, un pēdējā lidmašīna tika pārtraukta no ekspluatācijas līdz 1946. gadam.

Pārtvērējs, kas paredzēts Japānas dzimtenes aizsardzībai, vēlāk tika izvietots Ķīnā, lai aizsargātu Japānas spēku okupētās pilsētas. Ražošana tika pārtraukta 1944. gadā, pēdējā lidmašīna tika pārtraukta no ekspluatācijas 1946. gadā.

Divmotoru iznīcinātājs, kuru 1941. gadā sāka lietot kā tālmetienu iznīcinātāju un sauszemes uzbrukuma lidmašīnu, tas tika izmantots visā kara laikā Ķīnā un palika dienestā Japānas Imperatora armijas gaisa dienestā līdz pat 50. gadu sākumam. Daudzi Ki-45 tika pārcelti uz Ķīnas Republikas Nanking gaisa spēkiem un Mančukuo imperatora gaisa spēkiem, kuri tos darbināja 1960. gados.

Kawasaki Ki-45 panākumi lika Kawasaki sākt attīstītas versijas izstrādi. Kawasaki Ki-46 bija lielāki un jaudīgāki dzinēji nekā Kawasaki Ki-45. Tas pirmo reizi lidoja 1943. gadā un tika nodots ekspluatācijā Japānas impērijas armijas gaisa dienestā 1944. gadā. Kawasaki Ki-46 palika ekspluatācijā līdz 50. gadu beigām.

Pirmais japāņu iznīcinātājs ar lidmašīnu, kas aprīkots ar šķidrumu dzesētu dzinēju. Kawasaki Ki-61 palika ekspluatācijā, līdz 1945. gadā to aizstāja ar Kawasaki Ki-100.

Eksperimentāls iznīcinātājs, kas tika izstrādāts no Kawasaki Ki-61, tam bija par 10% lielāks spārnu laukums un nedaudz atšķirīga gaisa plēve. Prototips pirmo reizi tika lidots 1943. gada decembrī, taču lidojuma izmēģinājumi parādīja, ka jaunais spārns bija neapmierinošs un tika uzbūvēti tikai astoņi Ki-62.

Ki-83 tika izstrādāts kā atbilde uz 1943. gada specifikāciju jaunam smagam cīnītājam ar lielu darbības rādiusu. Pirmais no četriem prototipiem lidoja 1944. gada novembrī, un izrādījās, ka tiem ir ievērojama manevrēšanas spēja to izmēra lidmašīnām. Lidmašīna Ki-83 sāka darboties 1946. gadā un palika Japānas Imperatora armijas gaisa dienestā līdz 1955. gadam. Vairākas Ki-83 izlūkošanas versijas lidmašīnas tika piegādātas Ķīnas Republikas-Nanking gaisa spēkiem, kur tās redzēja rīcību, veicot izlūkošanas misijas. 1960. gadu sākumā sadalītajā Sičuaņas provincē.

Nakajima Ki-84 tiek uzskatīts par labāko no Japānas impērijas armijas gaisa dienesta viena virzuļdzinēja iznīcinātājiem, pirmie Ki-84 sāka darboties 1944. gadā, aizstājot gan Ki-43, gan Ki-44. Pirmie piemēri, kurus Japānas impērijas armija izmantoja Japānas dzimtenes aizsardzībai. Līdz 1947. gadam Ki-84 bija vislielākais iznīcinātāju skaits un palika ekspluatācijā Japānas Imperiālās armijas gaisa dienestā līdz 1948. gadam, bet ātri tika pārtraukta par labu reaktīvajiem iznīcinātājiem, kuri sāka darboties Japānas Imperatora armijas gaisa dienestā. Ki-84 tika pārdoti vai nodoti Lielās Austrumāzijas alianses valstīm, piemēram, Mandžūrijas štatam, Vjetnamas impērijai, Kambodžas karalistei un Ķīnas-Nankingas republikai.

Pirmais iznīcinātājs, kas darbojās pie dienesta griestiem, kas pārsniedz 40 000 pēdas un spēja ilgstoši lidot 42 000 pēdu augstumā, vispirms lidoja 1945. gada februārī un līdz 1946. gada sākumam sāka ražošanu. 1946. gadā tika ieviests Ki-87-II, ko darbināja spēcīgāks dzinējs un ar turbokompresoru. Ki-87-II palika Japānas Imperiālās armijas gaisa dienestā līdz 1953.

Izstrādāts Japānas impērijas armijas gaisa dienestam saskaņā ar tādām pašām prasībām kā Nakajima Ki-87, kas bija Japānas imperatora armijas gaisa dienesta rezerves dizains Tachikawa Ki-94. Ki-94 izrādījās labāks augstumā nekā Ki-87 un tādējādi vairāk tur, kur tiek ražots. Ki-94 palika Japānas Imperiālās armijas gaisa dienestā līdz 1954.

Ki-100 bija pēdējais viena sēdekļa cīnītājs ar virzuļdzinēju, kurš stājās liela mēroga Japānas dienestā. Vieglāks, ātrāks un manevrētspējīgāks par Ki-61, tas guva tūlītējus panākumus, jo tika uzskatīts par uzticamāku un vieglāk lidojamu nekā Ki-84. Vēlākā versijā Ki-100-II bija dzinējs ar turbokompresoru, kas ļāva tam sasniegt 40 000 pēdu. Lai gan Ki-100-II netika uzskatīts par augstkalnu cīnītāju, piemēram, Nakajima Ki-87, tas bija labs visaptverošs izpildītājs un palika ekspluatācijā līdz 1957. gadam.

Tālsatiksmes smagais iznīcinātājs tika izstrādāts, lai aizstātu Kawasaki Ki-45 un izrādījās ļoti veiksmīgs cīnītājs. Tā smagā bruņojuma, ātruma un veiklības kombinācija padarīja to par populāru lidmašīnu, un tā ražošanas līnijās ātri nomainīja Ki-83. 1949. gadā tika ieviests iznīcinātājs Ki-108 ar augstkalnu virsmu ar kabīni zem spiediena. Japānas impērijas armijas gaisa dienests Ki-102-II izmantoja Japānas dzimtenes aizsardzībai līdz pat 50. gadu beigām.

Ki-108 bija Ki-102 jauninājums, kurā tam bija uzstādīta zem spiediena esoša kabīne, lai tā varētu braukt lielā augstumā. Japānas imperatora armijas gaisa dienests to izmantoja Japānas dzimtenes aizsardzībā līdz 50. gadu vidum.

Japāņu licence Vācijas Messerschmitt Me 163 versijai, ko izmanto Japānas imperatora armijas gaisa dienests un Japānas imperatora armijas gaisa dienests kā J8M. Ki-200 bija pirmā ar raķetēm darbināma lidmašīna, kas darbojās Japānas Imperatora armijas gaisa dienestā, un abas tika plaši izvietotas kā punktveida aizsardzība ap Japānas pilsētām un armiju un jūras bāzēm. Ki-200 palika ekspluatācijā līdz 1954.

Nakajima Ki-201 kopā ar jūras versiju J10N tika izstrādāts, izmantojot Japānas militārā atašeja 1944. gadā iegūtos izlūkošanas datus, rasējumus un Messerschmitt Me 262 fotogrāfijas. Lidmašīna tika nodota ekspluatācijā 1947. gadā un līdz 1950. gada sākumam lielāko daļu izmantoto virzuļdzinēju iznīcinātāju nomainīja ar Japānas Imperiālās armijas gaisa dienestu. Ki-201 palika ekspluatācijā, līdz no piecdesmito gadu beigām to nomainīja Ki-202.

Nakajima Ki-202 ir Nakajima Ki-201 pārprojektēšana, ko izmanto Japānas Imperiālais armijas gaisa dienests un Nakajima J10N, ko izmanto kopā ar Japānas Imperiālā jūras kara flotes gaisa dienestu ar 35% spārnu un spārnu sakņu dzinējiem un pilnīgi jaunu fizelāžu . Tas pirmo reizi tika ieviests 1952. gadā, aizstājot Ki-201. 1957. gadā tika ieviests Ki-202-II, kas bija modernizēts Nakajima Ki-202 pārveidojums ar jaunu elektroniku, pārskatītu kabīnes izkārtojumu un modernizētu dzinēju, šī versija Japānas impērijas armijas gaisa dienestā tika izmantota līdz pat 70. gadu beigām.

Pārveidojot Nakajima Ki-200, ko izmanto Japānas Imperiālais armijas gaisa dienests, un Nakajima J8N, kas tiek izmantots Japānas Imperiālā flotes gaisa dienestā, Ki-203, tāpat kā tā jūras versija, J9M bija aprīkots ar droselējamu raķešu dzinēju, ievērojami palielinātu degvielu tvertnes pilnīgi jaunu fizelāžu ar burbuļu kabīni. Tā maksimālais ātrums bija 880 km/h pie 14 000 m, izturība ar motoru 15 minūtes pie 11 000 m. Pirmā lidmašīna tika nodota ekspluatācijā 1947. gadā un palika ekspluatācijā līdz 60. gadu vidum.

Kad Tachikawa Aircraft Company redzēja, kā Mitsubishi un Nakajima būvē reaktīvos lidaparātus Japānas Imperiālās armijas gaisa dienestam, viņi nolēma pieņemt darbā palīdzību no malas, kad uzaicināja Vācijā strādāt Kurt Tank. Tanks, izmantojot savas zināšanas par spārnu konstrukciju un turboreaktīvo dzinēju tehnoloģiju, sāka strādāt pie konstrukcijas, sākot no 1957. gada, kā rezultātā Ki-205 pirmo reizi lidoja 1961. gadā un sāka ražošanu 1963. gadā. Spēj sasniegt ātrumu 2 Mach Ki -205 izrādījās daudzfunkcionāls lidaparāts, kas piemērots gan pārtveršanai augstumā, gan uzbrukumam zemā līmenī. 1971. gadā Japānas impērijas armijā sāka lietot uzlabotu Ki-205 versiju ar nosaukumu Ki-205 – II ar pagarinātu spārnu auklu, kas tai piešķīra lielāku spārnu laukumu un līdz ar to lielāku pacelšanos, daudzas izmaiņas kabīnē un izsmalcinātu ieroča redzamību. Gaisa dienests. Ki-205-II kopā ar Ki-206 ir 1982. gada galvenais iznīcinātājs, kas tiek izmantots Japānas imperatora armijas gaisa dienestā.

Pagājušā gadsimta 60. gadu vidū Japānas Imperatora armijas gaisa dienesta un Japānas Imperiālā flotes gaisa dienesta kopīgā projekta rezultātā tika izveidots Mitsubishi Ki-206 Japānas imperatora armijas gaisa dienestam un Mitsubishi J14M kyoufuu tuvu gaisa atbalsts un iznīcinātājs uz zemes. lidmašīnas Japānas Imperiālā flotes gaisa dienesta sauszemes eskadroniem. Ki-206 kopā ar Ki-205 – II ir 1982. gada galvenais iznīcinātājs, kas tiek izmantots Japānas Imperatora armijas gaisa dienestā.


Nakajima gaisa kuģu rūpniecības vēsture.

(2) Motora attīstība Nakajima 1923. - 1945. gadā

Nakajima kungs, kuram bija aktīva loma vietējo tehnoloģiju attīstībā, 1924. gadā sāka būvēt Tokijas rūpnīcu (Ogikubo, redzams kreisajā attēlā), lai turpinātu ražot lidmašīnu dzinējus vietējā tirgū. Lai gan Nakajima Aircraft dzimis Ota, Gunma, Chikuhei Nakajima nolēma, ka rūpnīcai jāatrodas Tokijā, lai pieņemtu darbā augstākās klases darbiniekus, un uzdrošinājās nodalīt virsbūvi un dzinēju ražošanu, izvēloties vietu Tokijas priekšpilsētā.

Tika uzskatīts, ka tolaik lidmašīnu virsbūves inženierijas lielmeistari bija sāncenši, "Tukagoši Zero iznīcinātājam Mitsubishi" un "Tei Koyama Nakajima". Dzinēju Nakajima vadīja "Ichiro Sakuma no Nakajima Engine". Sakuma, strādājot Jokosukas jūras spēku arsenālā, pats bija apguvis iekšdedzes dzinēju dizainu, un pēc pensionēšanās viņš tika izraudzīts par pirmo jauno inženieri, kuru Nakajima kungs pieņēma darbā.

Sākumā, daļēji pateicoties Jūras spēku norādījumiem, Nakajima ražoja ar ūdeni dzesējamu V tipa 400 ZS motoru, kuram licenci piešķīra Lorena, Francija. Pēc tam līdz 1929. gadam tika ražotas 127 viena W tipa 450 ZS dzinēja vienības. Lorens Dītrihs bija automobiļu ražotājs ar lielisku vēsturi un lidmašīnu dzinēju ražošanā iesaistījās 1915. gadā, vienu gadu pēc Pirmā pasaules kara sākuma. Viņi sāka ar taisnu sešu, ar ūdeni dzesētu 100 ZS motoru, pēc tam ražoja 15, 275 ZS dzinēju, kas tika uzstādīts divvietīgajā Spud lidmašīnā. Dzinējs saņēma augstas atsauksmes, jo tam bija lieliska uzticamība. Nakajima izgatavotais Loren dzinējs tika uzstādīts Nakajima Breguet 19A-2B izlūkošanas nesēju lidmašīnās un Type14-3 izlūkošanas nesēju lidmašīnās, taču dzinēja izskats ar atklātajiem vārstiem nebija tik pievilcīgs kā Hispano-Suiza.

Neilgi pēc Lorena ražošanas uzsākšanas Nakajima apskatīja jaunāko Gloster produktu Anglijā - iznīcinātāju Gamecock un nolēma, ka tā radiālais dzinējs kļūst par galveno plūsmu. Pēc tam viņš 1925. gadā no Bristoles Anglijā ieguva gaisa dzesēšanas 9 cilindru radiālā dzinēja Jupitera ražošanas licenci. Tajā laikā ar gaisa dzesēšanu aprīkoti dzinēji izmantoja radiālos cilindrus, kas rotēja kopā ar dzenskrūvi, bet Nakajima dzirdēja, ka dzinējs ar labu Anglijā tika attīstīta dzesēšanas iespēja ar fiksētiem cilindriem. Jupitera dzinējs bija priekšā savam laikam, un tajā jau tika izmantotas vismodernākās tehnoloģijas, piemēram, automātiska regulēšanas ierīce izplūdes atdalīšanai, spirālveida cauruļvadi vienmērīgai ieplūdes sadalei un četru vārstu ieplūdes un izplūdes sistēma. 1927. gadā pēc divu ražošanas inženieru instruktoru uzaicināšanas no Bristoles uzņēmuma ražošanā tika uzsākta Jupitera tipa 6 420 ZS un Tipa 7 450 ZS ar turbo lādētāju. 150 6. tipa dzinēja vienības tika uzstādītas 3. tipa iznīcinātājlidmašīnās un Nakajima Fokker transporta lidmašīnās. Turklāt 91. tipa armijas iznīcinātājlidmašīnās tika uzstādītas aptuveni 350 7. tipa dzinēja vienības.
Tajā laikā lidmašīnu dzinēji tika sadalīti trīs grupās: Jupiters no Nakajimas (ar gaisu dzesēts), Hispano-Suiza no Mitsubishi (ar ūdeni dzesēts) un BMW no Kawasaki (ar ūdeni dzesēts), un Nakajimas tālejošā gudrība bija krietni priekšā citiem . Vēlāk tika saražotas aptuveni 600 vienības, ieskaitot 8. un 9. tipa dzinējus.

Loren dzinēja projektēšanas instruktors Moreau no Francijas dzīvoja japāņu istabā un lasīja lekciju sēriju citos uzņēmumos un skolās. Viņš pieņēma Japānas kultūru, bet otrs instruktors Burgoins no Bristoles Anglijā turpināja dzīvot kā britu kungs. Burgoyne ienīda Takuan (japāņu dzeltenā marinēta redīsa) smaržu. Viņš palika viesnīcā Imperial, un ir teikts, ka viņš izkāpis no vilciena Ogikubo, vienu staciju pirms Nišiogikubo (tuvākā stacija uzņēmumam), jo priekšā bija marinētu gurķu veikals.

Nakajima Jupiters, 6. tips
Gaisa dzesēšana, kopējais darba tilpums 28,7 metieni
Izņemiet jaudu: 420 ZS pie 1500 apgriezieniem minūtē
Svars: 331 kg

Izmantojot šo dzinēju, produktu nacionalizācijas plāns tika veikts pakāpeniski. Pētot 9 cilindru radiālo dzinēju ar gaisa dzesēšanu (amerikāņu lapsene), pirmais sākotnēji konstruētais 9 cilindru gaiss (450 ZS "Kotobuki" dzinējs) tika pabeigts 1930. gadā. Jupiters tika izgatavots, pamatojoties uz amatniecības inženieriju, un produktivitāte nebija laba . Piemēram, dzesēšanas spuras tika veidotas, apstrādājot. Pēc tam Nakajima mēģināja apvienot Jupitera dizainā atrastos labos punktus ar ASV ražotās lapsenes racionālo dizainu. Šajā gadījumā Nakajima kā inženierijas vingrinājumus izstrādāja četrus dzinēju tipus - AA, AB, AC un AD, taču tie nekad netika ražoti. Nākamais dzinēja dizains, AE, bija ļoti novatorisks - ar urbumu 160 mm un gājienu 170 mm. Tika izgatavoti prototipi un veiktspējas testi, taču tas netika pieņemts pārāk aizrautīgās inženierijas dēļ. 1929. gadā tika strādāts pie AH ar urbumu/gājienu 146/160 mm un kopējo darba tilpumu 24,1 metienu. Šai bija jābūt motora konstrukcijas galīgajai versijai, un kļūmes netiks pieļautas. Inženierijas pamatā bija stingras, vienkāršas un skaidras konstrukcijas princips. 1930. gada jūnijā tika pabeigts pirmais prototips, un vasarā tas izturēja tipa apstiprinājuma testu. Pēc tam rudenī tika sākti lidojuma testi, izmantojot 90. tipa izlūkdatora lidmašīnu. 1931. gada decembrī šo dzinēju apstiprināja un pieņēma Jūras spēki. Pēc tam tas tika uzstādīts 90. tipa izlūkošanas nesējlidmašīnās, 90. tipa iznīcinātāju lidmašīnās un slavenajos Mitsubishi iznīcinātājos. Sākumā armija neizrādīja nekādu interesi par šo dzinēju, kā parasti, izmantojot Jūras spēku instrukciju, bet vēlāk to pieņēma kā dzinēju Ha-1 Ko, ko izmantoja 97 tipa iznīcinātājos, un tai nebija citas izvēles, kā atzīt tā pārākumu.
Dzinējs saistībā ar Jupiteru tika nosaukts par "Kotobuki", kas Kanji ķīniešu stila izrunā izrunāja "Ju". Kopš tā laika Nakajima izmantoja vienu Kanji (japāņu raksturs), lai panāktu veiksmi dzinēju nosaukumos. Mitsubishi izmantoja zvaigžņu vārdus, bet Hitachi - arī vēja vārdus.

Nakajima dzinēji tika plaši izmantoti ne tikai kara lidmašīnās, bet arī civilās lidmašīnās. Līdz kara beigām tika ražoti aptuveni 7000 vienību civilām vajadzībām.

Armijā viņi nosauca lidmašīnu dzinējus pēc tipa kodiem, piemēram, Ha-25 vai Ha-112, savukārt jūras spēkos izmantoja tādus segvārdus kā "Homare (gods)" vai "Kasei (Marss"). Kā jau minēts iepriekš, Nakajimā tika izmantots viens Kanji (japāņu raksturs), kuram bija laba veiksme, piemēram, "Kotobuki (labvēlīgs)", "Sakē (slava)", "Mamori (sargs)" vai "Homare". Mitsubisi izmantoja tādus zvaigžņu nosaukumus kā "Kinsei (Jupiters)", Hitachi-tādus vēja nosaukumus kā "Ten-pu (vējš augstās debesīs)"

"Kotobuki" dzinējs tika pilnveidots un pārveidots par "Hikari (viegls)" dzinēju ar urbumu un gājienu, kas paplašināts līdz cilindra robežai (160 °)

180 mm, lai iegūtu 32,6 metienu darba tilpumu), un jauda tika palielināta līdz 720 ZS. & quot; Hikari & quot; tika izmantots 95. tipa pārvadātāju iznīcinātājos un 96. tipa pārvadātāju uzbrucējos. 1933. gadā tika pabeigts 1000 ZS Ha-5 prototips, kas izmantoja "Kotobuki" urbumu/gājienu un divrindu 14 cilindru. Turpmāk uzlabotais Ha-5 tika pārveidots par 1500 ZS, un tika saražotas aptuveni 5500 vienības.

Tajā pašā laikā pēc Jūras spēku pieprasījuma tika izstrādāts dzinējs ar nosaukumu "Sake", kura armijas nosaukums bija Ha-25 (sīkāka informācija šeit). Šis dzinējs tika unikāli konstruēts kā maza izmēra, viegls un augstas veiktspējas dzinējs ar nelielu darba tilpumu un mazāk cilindru. Pēc tam tas tika uzstādīts 97. tipa nesēju uzbrucējos, Zero tipa nesēju iznīcinātājos, & quot; Gekko (mēness gaisma) & quot; 99 tipa divu dzinēju vieglie bumbvedēji, kā arī slavenajos 1. tipa & quot; Šis dzinējs galvenokārt tika ražots Tokijas rūpnīcā un Musashino rūpnīcā (uzcelta 1938. gadā un vēlāk kļuva par Musashi rūpnīcu pēc apvienošanās ar Tama rūpnīcu), un tika saražoti vairāk nekā 30 000 vienību (augstākais skaits vēsturē).

Musashino rūpnīca bija ekskluzīva armijas dzinēju rūpnīca, un šī modernā rūpnīca, kuras platība bija 660 000 m2, bija Ichiro Sakuma izcilo zināšanu un darba vainags. Tika iekļauta Ford modernā montāžas līnijas darbība un Taylor sistēmas zinātniskais vadības process. Turklāt tika rūpīgi pārdomāts ražošanas process, materiālu plūsma un cilvēku kustība. Labklājības programma darbiniekiem un pirmās klases labierīcības tajā laikā bija nepārspējamas. Jūras spēki par to bija pārsteigti un pieprasīja, lai viņiem tiktu izgatavota tāda paša veida ekskluzīva rūpnīca. Tama rūpnīca tika uzcelta blakus Musashino rūpnīcai 1941. gadā. Vēlāk, kara situācijas saasināšanās dēļ, Nakajima ierosināja apvienot gan armijas, gan flotes rūpnīcas, lai nodrošinātu efektīvāku darbību, taču karadarbības dēļ starp tām tas nenotika. panākt vienošanos vairākus gadus, līdz viņi tika apvienoti Musaši rūpnīcā.

Ichiro Sakuma, kurš aktīvi darbojās Nakajima dzinēju inženierijā katrā rūpnīcā, arī plānoja un izveidoja Mitaka pētniecības centru, kā arī strādāja par celtniecības departamenta ģenerāldirektoru. Pētniecības centra Mitaka mērķis bija ne tikai lidmašīnu izpēte, bet arī vispārēja politikas, ekonomikas un inženierzinātņu izpētes centra izveide. Uzskatot, ka tā ir tālejoša Japānas nākotnes programma, tika nodrošināta zemes masa, kas pārsteidza 1,65 miljonus kvadrātmetru. Nejauši zemes revolūcijas ceremonija notika 1941. gada 8. decembrī, dienā, kad Japāna iestājās Otrajā pasaules karā. Bet vēlāk, kara apstākļu pasliktināšanās dēļ, militāristi iebilda pret tik sarežģīta izpētes centra izveidi, un objekts sāka savu darbību kā inženiertehniskās nodaļas prototips un prototipu ražotne 1943. gadā. (Pēc kara gandrīz visa tā telpas tika pārdotas. Galvenā inženiertehniskā ēka tagad tiek izmantota kā Starptautiskās Kristīgās universitātes skolas ēka.)

Mitaka pētniecības centrs (prototipu ražošana, inženierijas centrs un pakaramais)

Otrā pasaules kara uzliesmojuma rezultātā Eiropā 1939. gadā Eiropā un ASV izstrādātie dzinēji pārcēlās uz 1500.

Otrā pasaules kara japāņu lidmašīnas

Turbokompresora importēšana Japānas kara flotes turbokompresoru izstrādes vēsture ir pārsteidzoši gara, un tā sniedzas līdz pat Showa 12 (1937).

Majors Džikju Tanegašima, kurš tobrīd atradās Francijā, veiksmīgi noslēdza līgumu par turbokompresora importēšanu no Brown Boveri & amp Cie AG Šveicē (BBC), un turbokompresors ieradās Japānā. Tas tika ierakstīts Koukuu Gijyutsu Jouhou Tekiroku (informācija par aviācijas tehnoloģijām).

BBC turbokompresors tika izstrādāts aerosola dīzeļdzinējiem, ko daudzas valstis tolaik pētīja. Tie, kas tika importēti, bija paredzēti 500 ZS dīzeļdzinējiem.

Izmantojot šo BBC turbokompresoru, Mitsubishi, Nakajima, Hitachi un Ishikawajima tika pasūtīts izpētīt un attīstīt lidmašīnu turbokompresorus. Nakajima to nevarēja izdarīt, jo šis uzņēmums koncentrējās uz mehānisko kompresoru izstrādi.

Trīs uzņēmumu izstrādātie turbokompresori deva rezultātus. Mitsubishi turbokompresors tika uzstādīts uz J2M4 Raiden Model 32, bet Hitachi turbokompresors tika uzstādīts uz Nakajima C6N2 Saiun. Kas tad notika ar Ishikawajima Airplanes izstrādāto turbokompresoru? Mūsu izmeklēšana atklāja, ka tā tika uzstādīta uz Nakajima Sakae, Zero Fighter dzinēja.

Jūras spēku augstkalnu iznīcinātāju projekts
Navy ’s gaisa štāba ziņojumā, jautājums par eksperimentālajiem pētījumiem pēc Showa 17 (1942), par turbokompresoriem ir teikts sekojošais:
Turbokompresora pabeigšana ir būtiska augstkalnu cīnītāju panākumiem. Tāpēc tas tika prototipēts un izturību pārbaudīja Ishikawajima, Hitachi un Mitsubishi kopš Showa 15 (1940). Tomēr tas vēl nav pārbaudīts lidmašīnā vai lidojuma laikā. Lai turpinātu testēšanu, ir jāsagatavo masveida ražošanas iekārta, pamatojoties uz izplūdes turbīnas kompresora jaudu un veidu, kas jāuzstāda pieņemtajā lidmašīnā.
Skaidrs, ka tajā laikā Jūras spēku turbokompresoru attīstība pārgāja no izpētes posma uz darbības fāzi. Pēc tam Kuugishou Shouhou (The Naval Technical Air Arsenal Journal), kas izdots 1942. gada 9. februārī, piemin Nakajima Sakae 11. modeļa dzinēja, kas aprīkots ar turbokompresoru, koka maketa testēšanu.

Tajā rakstīts: "Tiek prognozēts, ka tas tiks uzstādīts Zero Fighter", tāpēc šis varētu būt pirmais oficiālais raksts, kurā minēts Zero Fighter turbokompresors. Kuugishou Shouhou no 10 dienām vēlāk, 19. februārī, min, ka "Sākotnējā izpētes sanāksme turbokompresora Zero Fighter". Tas rakstiski pierāda, ka eksistē Zero Fighter, kas aprīkots ar turbokompresoru.

Ishikawajima Aerial Industries turbokompresors
Ishikawajima Aerial Industries tika dibināta Showa 16 (1941) kā daļa no Tokijas Ishikawajima kuģu būvētavas. Ishikawajima lidaparātu dzinēju rūpnīca, kā tas kļuva zināms, kļuva par atsevišķu meitasuzņēmumu un izveidoja savu galveno mītni netālu no Kuugishou (Jūras tehniskā gaisa arsenāla) Janahamas rajonā Kanazawa. Tur Ishikawajima turpināja attīstīt lidmašīnu dzinējus, kā to darīja Ishikawa salā. Kara laikā, izņemot turbokompresoru un turbopārvades dzinēju izpēti un attīstību, viņi koncentrējās uz Sakae motoru pārveidošanas ražošanu un lielā mērā veicināja dzinēju piegādi Zero Fighters. Sakae ražošana tika piešķirta 1940. gadā, un pirmā Sakae Model 11 pārveidošana tika izlaista 1941. gada beigās.

Hiroshi Yoshikuni, Ishikawajima Aerial Industries turbokompresora dizainers, paziņoja, ka Ishikawajima izgatavoja Sakae Model 11, ko Kuugishou izmantoja koka maketa turbokompresora pārskatīšanai. Ņemot vērā Ishikawajima Aerial Industries ’ Sakae ražošanas situāciju, mēs spekulējam, ka koka maketu pārskatīšanai viņi izvēlējās modeli Sakae 11, nevis 12. vai 21. modeli. Zero Fighter uzstādītais turbokompresors bija Ishikawajima IET 4. modeļa sērija. tā 500 ZS turbokompresoru, kas atbalstīja 1000 ZS klases motorus. Turpinot turbokompresoru izstrādi, tika pabeigts IET 5. modelis 2000 ZS klases motoriem, taču tas nekad netika līdz faktiskajām lidmašīnām. Kas attiecas uz turbīnu lāpstiņām, Ishikawajima un Mitsubishi izmantoja radzes tipa Hitachi, izmantojot metinātu tipu.

Problēmas ar turbokompresoru
Attēli parāda, ka šim Sakae dzinējam ar turbokompresoru turbokompresors ir pievienots tieši, bez starpdzesētāja, un tam ir ļoti vienkārša uzstādīšana. Japāņu turbokompresoriem bija problēmas ar materiāliem, jo ​​BBC parauga turbokompresors tika izgatavots dīzeļdzinējiem. Radās problēmas ar BBC turbokompresora un#8217 materiāliem, kas tika izstrādāti, lai izturētu 500 grādus pēc Celsija dīzeļmotoriem, lai tos varētu izmantot benzīna dzinējā, bet turbokompresoram bija jāiztur vairāk nekā 700 grādu pēc izplūdes siltuma. Ishikawajima turbokompresori bija izgatavoti no augstas kvalitātes materiāliem, kas iztur karstumu, piemēram, niķeļa-hroma-volframa tērauds (līdzīgi kā materiāls, ko izmantoja B-17), taču joprojām notika nelaimes gadījumi, piemēram, izplūdes gāzu izplūdes vārsta eksplozija. un attīstība nenotika gludi. Problēma ar materiāla izvēli karstumizturīgam tēraudam šķita grūts šķērslis turbokompresoru izstrādē.

Neskatoties uz visām šīm problēmām, A6M3 Zero Fighter tika pārveidots, lai izmantotu turbokompresoru, un tika ziņots, ka tas ir pabeigts 1942. gadā. Bet problēmu dēļ pārbaude nenotika, kā plānots, un beidzot projekts tika atmests pirms pirmā lidojuma pārbaude. Tas, ka Zero Fighter bija pirmais japāņu iznīcinātājs, kurš izmantoja turbokompresoru, tagad ir zināms, taču ir patiesi kauns, ka tas nekad nav lidojis.


IRA nogalināja lordu Mountbattenu

1979. gada 27. augustā lords Luiss Mountbatens tiek nogalināts, kad Īrijas Republikāņu armijas (IRA) teroristi uzspridzina uz viņa zvejas kuģi paslēptu 50 mārciņu smagu bumbu Ēna V.. Mountbatten, kara varonis, vecākais valstsvīrs un karalienes Elizabetes II otrais brālēns, pavadīja dienu kopā ar ģimeni Donegalas līcī pie Īrijas ziemeļrietumu piekrastes, kad uzsprāga bumba. Uzbrukumā tika nogalināti vēl trīs cilvēki, tostarp Mountbatten un 14 gadus vecais mazdēls Nikolajs. Vēlāk tajā pašā dienā IRA bombardēšanas uzbrukumā uz zemes tika nogalināti 18 britu desantnieki Daunas grāfistē, Ziemeļīrijā.

Mountbatten slepkavība bija pirmais trieciens pret Lielbritānijas karalisko ģimeni, ko IRA veica ilgstošās teroristu kampaņas laikā, lai padzītu britus no Ziemeļīrijas un apvienotu to ar Īrijas Republiku uz dienvidiem. Uzbrukums nocietināja daudzu britu sirdis pret IRA un pārliecināja Mārgaretas Tečeres valdību ieņemt stingru nostāju pret teroristisko organizāciju.

Battenbergas prinča Luija dēls un karalienes Viktorijas I mazmazmazdēls Luiss Montbatens ienāca Karaliskajā kara flotē 1913. gadā, būdams agrīnā pusaudža vecumā. Viņš redzēja dienestu Pirmā pasaules kara laikā un, sākoties Otrajam pasaules karam, bija 5. iznīcinātāju flotiles komandieris. Viņa iznīcinātājs, HMS Kellija, kara sākumā tika nogremdēts no Krētas. 1941. gadā viņš komandēja lidmašīnu pārvadātāju, bet 1942. gadā tika iecelts par kombinēto operāciju vadītāju. No šī amata viņš tika iecelts par sabiedroto augstāko komandieri Dienvidaustrumāzijā 1943. gadā un veiksmīgi vadīja kampaņu pret Japānu, kas noveda pie Birmas atgūšanas.

1947. gadā viņš tika iecelts par Indijas pēdējo vietnieku, un viņš tajā pašā gadā vadīja sarunas, kas noveda pie Indijas un Pakistānas neatkarības. 50. gados viņš ieņēma dažādus augstus jūras amatus un bija Apvienotās Karalistes Aizsardzības štāba priekšnieks un štābu priekšnieku komitejas priekšsēdētājs. Tikmēr viņš tika padarīts par Birmas vikontu Mountbattenu un pirmo grāfu. Viņš bija Filipa Mountbatena onkulis un iepazīstināja Filipu ar topošo karalieni Elizabeti. Vēlāk viņš veicināja abu tālo brālēnu laulību un kļuva par krusttēvu un padomdevēju viņu pirmdzimtajam Velsas princim Čārlzam.

Lords Mountbattens kļuva par gubernatoru un pēc tam Vaitas salas leitnantu, un viņš bija cienījams un mīlēts karaliskās ģimenes loceklis. Viņa slepkavība 1979. gada 27. augustā, iespējams, bija visšokējošākā no visām šausmām, ko IRA izraisīja pret Apvienoto Karalisti. Papildus mazdēlam Nikolajam uzbrukumā tika nogalināts 15 gadus vecais laivas rokraksts Pols Maksvels, bet nāvējoši tika ievainota arī Dowager Lady Brabourne, Nicholas un#x2019 vecmāmiņa. Mountbatten ’s mazdēls Timothy –Nicholas ’ dvīņi – tika ievainoti, tāpat kā viņa meita Lady Brabourne un dvīņi un#x2019 tēvs lords Brabourne. Lordam Mountbatenam bija 79 gadi.

IRA nekavējoties uzņēmās atbildību par uzbrukumu, sakot, ka tā bumbu uzspridzināja ar tālvadības pulti no krasta. Tā arī uzņēmās atbildību par tās pašas dienas sprādzienu pret britu karaspēku Daunas grāfistē, kas prasīja 18 cilvēku dzīvības.

IRA biedrs Tomass Makmahons vēlāk tika arestēts un notiesāts par bumbas sagatavošanu un uzstādīšanu, kas iznīcināja Mountbatten laivu. Gandrīz leģenda IRA, viņš bija IRA ’ bēdīgi slavenās dienvidu Armagas brigādes vadītājs, kurā tika nogalināti vairāk nekā 100 britu karavīru. Viņš bija viens no pirmajiem IRA biedriem, kurš tika nosūtīts uz Lībiju trenēties ar detonatoriem un laika ierīcēm, un bija sprāgstvielu eksperts. Authorities believe the Mountbatten assassination was the work of many people, but McMahon was the only individual convicted. Sentenced to life in prison, he was released in 1998 along with other IRA and Unionist terrorists under a controversial provision of the Good Friday Agreement, Northern Ireland’s peace deal. McMahon claimed he had turned his back on the IRA and was becoming a carpenter.


The History of Japan’s First Jet Aircraft

Earlier this year, our collections staff at the Udvar-Hazy Center, in Chantilly, Virginia, moved the Nakajima Kikka from beneath the wing of the Sikorsky JRS flying boat in the Mary Baker Engen Restoration Hangar and out onto the floor beneath the Boeing B-29 Enola Geja. Moving the Kikka provides an opportunity to bring visitors closer to the last known example of a World War II Japanese jet aircraft and the only Japanese jet to takeoff under its own power—it also opened up space in the Hangar so that our team could install netting to deter birds.

Museum preservation and restoration specialists (from left to right) Carl Schuettler, Sharon Kullander, Anne McCombs, Will Lee, and Chris Reddersen carefully position the Kikka in the Boeing Aviation Hangar at the Udvar-Hazy Center.

The Kikka took cues from the German Messerschmitt Me 262 fighter. When Germany began to test the jet-propelled Messerschmitt Me 262 fighter in 1942, the Japanese air attaché to Germany witnessed a number of its flight trials. The attaché’s enthusiastic reports eventually led the naval staff in Japan to direct the Nakajima firm in September 1944 to develop a twin-jet, single-seat, aircraft similar in layout to the Me 262.

Nakajima leadership assigned the project to engineers Kazuo Ohno and Kenichi Matsumura. As the war continued to deteriorate for Japanese forces, Japanese naval pilots launched the first suicide missions using aircraft in October 1944. Several aircraft manufacturers turned to designing aircraft specifically for use during suicide missions, including the Nakajima Kikka. Ohno and Matsumura led the design as it developed an all-metal aircraft except for the fabric-covered control surfaces. The designers planned to hinge the outer wing panels to fold up so that ground personnel could more easily hide the aircraft in caves. They mounted the jet engines in pods slung beneath each wing to make it easier to install and test different engines. Three different engines were tried before the designers settled on the Ne-20, an engine that drew heavily from the German BMW 003.

Experimentation with turbojet engine technology had begun in Japan as early as the winter of 1941-42 and in 1943, a Japanese technical mission to Germany selected the BMW 003 axial-flow turbojet for development in Japan. A large cargo of engines, engineering plans, photographs, and tooling sailed for Japan by submarine but vanished at sea. However, one of the technical mission engineers had embarked aboard another submarine and arrived in Japan with his personal notes and several photographs of the BMW engine. The Naval Technical Arsenal at Kugisho developed the Ne-20 turbojet based on this information.

Due to the lack of high-strength alloy metals, the turbine blades inside the jet engine could not last much beyond a few hours but this was enough time for operational testing and 20 to 30 minute flights for a one-way suicide missions.

The first prototype Kikka was ready to fly by August 1945. Lieutenant Commander Susumu Takaoka made the initial flight on August 7 and attempted to fly again four days later but he aborted the takeoff and crashed into Tokyo Bay, tearing off the landing gear. Various sources offer different causes for the crash. One writes that technicians had mounted the two takeoff-assist rockets at the wrong angle on the fuselage while another ascribes blame on the pilot who mistook the burnout of the takeoff rockets for turbojet engine trouble, throttled back, and executed a safe but unnecessary crash landing. Development of the Kikka ended four days later when the Japanese surrendered. Another prototype was almost ready for flight and American forces discovered about 23 Kikka aircraft under construction at the Nakajima main factory building in Koizumi (present day Oizumi in Gunma Prefecture), and at a site on Kyushu island.

Despite considerable research in the U.S. and Japan, we know little about the origins of the Museum’s Kikka. We can only say that American forces shipped several Kikka’s and probably major components to the U.S. after the war, but we do not know which factory they originated from. U.S. Navy records show the Museum’s Kikka at NAS Patuxent River, MD on February 18, 1949. The aircraft was shipped from Norfolk on September 2, 1960 to the Paul Garber Facility in Suitland, MD. Museum staff accessioned the Kikka into the collection on March 13, 1961. Correspondence in 2001 with Japanese propulsion specialist Kazuhiko Ishizawa theorized that Nakajima constructed the Museum’s Kikka airframe for load testing, not for flight tests. This may explain why the engine nacelles on the Museum’s Kikka airframe are too small to enclose the Ne-20 engines, but it does not explain why the airframe is relatively undamaged. Load testing often results in severe damage or complete destruction of an airframe. There is no further information on the subsequent fate of the Kikka that crashed on its second test flight. Treatment specialist staff at the Udvar-Hazy Center confirmed that the Museum’s Kikka is fitted with manual folding wings.

Kikka and Messerschmitt Me 262 Compared

Based on the performance requirements for a one-way suicide mission, and the size and output of the Ne-20 engine, the performance goals for the Kikka differed considerably from the goals set for the German fighter. The Kikka’s estimated range was 205 km (127 mi) with a bomb load of 500 kg (1,102 lb) or 278 km (173 mi) with a load of 250 kg (551 lb) at a maximum speed of 696 km/h (432 mph). A takeoff run of 350 m (1,150 ft) was predicted with rockets mounted on the fuselage to shorten the run, and for training flights, the Kikka was expected to land at 148 km/ (92 mph). The Me 262 A-1a production fighter could fly 845 km (525 miles) with a typical military payload of 4 x MK 108 cannon (30 mm) and 2 x 300 ltr (79 gal) drop tanks at 870 km/h (540 mph) maximum speed. The pilot of the German fighter could land at 175 km/h (109 mph) and required 1,005 m (3,297 ft) to takeoff without rocket-assist.

Although the Kikka resembles the Me 262 in layout and shape, the German jet is actually considerably larger. Here is a comparison of both aircraft:

Experimental Prototype Kikka:

Wingspan: 10 m (32 ft 10 in)
Garums: 8.1 m (26 ft 8 in)
Height: 3 m (9 ft 8 in)
Weights: Empty, 2,300 kg (5,071 lb)
Gross: 4,080 kg (8,995 lb)
Engines: (2) Ne-20 axial-flow turbojets,
475 kg (1,047 lb) thrust

Production Me 262 A-1a Fighter:

12.65 m (41 ft 6 in)
10.6 m (34 ft 9 in)
3.83 m (12 ft 7 in)
4,000 kg (8,820 lb)
6,775 kg (14,939 lb)
(2) Junkers Jumo 004 B axial-flow,
900 kg (1,984 lb) thrust

Published Sources:

J. Richard Smith and Eddie J. Creek, Jet Planes of the Third Reich, (Boylston, MA: Monogram Aviation Publications, 1982).

René J. Francillon, Japanese Aircraft of the Pacific War, (London: Putnam, 1979).

Robert C. Mikesh, Kikka, Monogram Close-Up 19, (Monogram, 1979).

Tanegashima, Tokyasu. “How the First Jet Engine in Japan was Developed,” Gas Turbines International, November-December 1967, 1200. Nakajima Kikka Curatorial File, Aeronautics Department, The National Air and Space Museum, Washington, DC


Kawasaki Ki-61 Hien / Ki-100

The Kawasaki Ki-61 Hien or Type 3 Fighter remains to this day one of the most recognizable Japanese fighters of the World War II era. What makes Hien unique is the powerplant – it was the only mass-produced Japanese fighter powered by an inline, liquid cooled engine.

The Ki-61 began to arrive at the frontlines in large numbers in the summer of 1943 and took part in battles over New Guinea and later over the Philippines and Okinawa, as well as in the defense of the Japanese Home Islands. In total over 3,000 examples of various Ki-61 variants and derivatives were built. The Ki-100, a Ki-61-II Kai airframe mated to the Ha-112-II radial engine, entered service towards the end of the war.

Origins and development of the design

Early days

On July 1, 1938 the Rikugunsho (Japanese Ministry of the Army) signed off on the expansion and fleet modernization program of the Dai Nippon Teikoku Rikugun Kokutai (Imperial Japanese Army Air Force, IJAAF), known as Koku Heiki Kenkyu Hoshin (Air Weapons Research Policy). The program, prepared by Rikugun Koku Honbu (Army Aeronautical Department), included the development of two single-seat fighter types by Nakajima – light Ki-43 and the Ki-44 heavy fighter. “Light” and “heavy” designations did not reflect the weight or size of the aircraft, but rather the caliber of offensive armament carried by the fighters. According to the program’s requirements, the light single-seat fighter (kei tanza sentoki) was to be armed with a pair of 7.7 mm machine guns, i.e. standard weapons carried by the Army Air Force fighters since its inception. The aircraft, designed as a weapon against enemy fighters, was supposed to be very maneuverable and fast. On the other hand, the heavy single-seat fighter (ju tanza sentoki) was to be used against enemy bombers. That type of mission required a machine with a high level flight speed, a good rate of climb and a heavy offensive punch. The proposed heavy single-seat fighter was therefore required to be armed with two 7.7 mm machine guns and one or two “cannons”, which in reality meant large caliber machine guns

In June 1939, less than a year after the modernization program had been approved, the officials of Rikugun Kokugijutsu Kenkyusho (Army Air Technical Research Institute, often known under its abbreviated name Kogiken or Giken) began a series of consultations with the representatives of aeronautical companies in order to work out technical requirements for a new generation of combat aircraft, whose development would be included in the 1940 Koku Heiki Kenkyu Hoshin program. During the consultations the Kogiken officials met twice (in June and in August) with the Kawasaki engineers. In addition to talks and consultations with the local aeronautical industry leaders, the Kogiken team studied lessons learned from the battles against the Soviet air force over Khalkhin-gol (Nomonhan) and reports of the Japanese observers covering operations of the Luftwaffe against Poland. The newest trends and developments in aviation technology in nations considered global aviation powers (especially Germany, Britain and the U.S.) were also carefully studied and scrutinized.

In February 1940 Rikugun Koku Honbu Gijutsubu (Army Aeronautical Department, Engineering Division) used the results of the studies to commission several Japanese aircraft manufacturers to develop new combat aircraft designs, with considerably better performance, stronger construction and heavier armament than the types in active service or in development at that time. In the single-engine, single-seat fighter category the division into light and heavy types was maintained. Kawasaki received orders to develop two fighter designs powered by inline, liquid cooled engines – the heavy Ki-60 and the light Ki-61 fighter. Orders for similar types, but powered by radial, air cooled engines, were placed with Nakajima (the light Ki-62 fighter and the heavy Ki-63). In addition, Kawasaki designers were tasked with the development of the ground-breaking Ki-64 fighter, while Mitsubishi was to produce the Ki-65 heavy fighter. The winning designs in each category were to be officially selected in March 1942.


Boudicca (died c.AD 60)

Imagined portrait of Boudicca © Boudicca was queen of the Iceni people of Eastern England and led a major uprising against occupying Roman forces.

Boudicca was married to Prasutagus, ruler of the Iceni people of East Anglia. When the Romans conquered southern England in AD 43, they allowed Prasutagus to continue to rule. However, when Prasutagus died the Romans decided to rule the Iceni directly and confiscated the property of the leading tribesmen. They are also said to have stripped and flogged Boudicca and raped her daughters. These actions exacerbated widespread resentment at Roman rule.

In 60 or 61 AD, while the Roman governor Gaius Suetonius Paullinus was leading a campaign in North Wales, the Iceni rebelled. Members of other tribes joined them.

Boudicca's warriors successfully defeated the Roman Ninth Legion and destroyed the capital of Roman Britain, then at Colchester. They went on to destroy London and Verulamium (St Albans). Thousands were killed. Finally, Boudicca was defeated by a Roman army led by Paulinus. Many Britons were killed and Boudicca is thought to have poisoned herself to avoid capture. The site of the battle, and of Boudicca's death, are unknown.


Analog computers

Analog computers use continuous physical magnitudes to represent quantitative information. At first they represented quantities with mechanical components (redzēt differential analyzer and integrator), but after World War II voltages were used by the 1960s digital computers had largely replaced them. Nonetheless, analog computers, and some hybrid digital-analog systems, continued in use through the 1960s in tasks such as aircraft and spaceflight simulation.

One advantage of analog computation is that it may be relatively simple to design and build an analog computer to solve a single problem. Another advantage is that analog computers can frequently represent and solve a problem in “real time” that is, the computation proceeds at the same rate as the system being modeled by it. Their main disadvantages are that analog representations are limited in precision—typically a few decimal places but fewer in complex mechanisms—and general-purpose devices are expensive and not easily programmed.


Intervija

Interview: Shigeru Nakajima

Interviewer: William Aspray

Place: Tokyo, Gakushi Kaikan, Conference Room No. 309, University Alumni Association Hall

[Note: Aspray’s questions are spoken in Japanese by a translator, and Nakajima's replies are spoken in English by a translator. Dr. Yuzo Takahashi of Tokyo University of Agriculture and Technology, who reserved the room is also present. Dr. Takehiko Hashimoto of the University of Tokyo is also present, also Mr. Naohiko Koizumi of Futaba Corporation.

Family Background and Education

Dr. Nakajima, I am going to ask you to tell your life story in your own words. I may occasionally ask you a question to follow up on something you've said, but I'll let you direct the flow of the conversation, if that's okay with you.

Could you begin by telling me about your childhood and your education?

I was born in a fishing village in the Chiba prefecture, Onjuku, and my father was the schoolmaster of the primary school. My father was very devoted to education, and he established a new high school for women in Japan in the fishing village.

Because of your father's profession, was it expected that the children would get a good education and go to university?

Yes, I have three brothers and four sisters, and just three of four brothers (including me) and two of four sisters went to the university. My elder sister went to a Japanese Women’s University, went into a mathematics department, and became a teacher of mathematics of women’s high school. The youngest of my elder brothers is the late Dr. Yoji Ito who passed away at the age of 53.

Were you a good student when you were growing up? What did you want to do as an adult? What were your aspirations for your adult life?

I was not an excellent student. I was leader of the class at middle school but failed to enter the Imperial University of Tokyo, so I had to go to Waseda University, a private university and the best private university.

What did you want to do when you were growing up?

In high school I already wanted to become an electrical engineer.

I see. What was taught as part of your course of study at the university?

I went into the power engineering department because it also offered communications. If I went to a communications department, I couldn't get a national license, national license for electrical power engineers so I had to go into power engineering. Privately, I was already studying communications.

I see. That was an important thing to have for one's future career? Is that right?

Toshiba Patent Monopoly and JRC

You graduated in 1930. That's just about the time, at least in the West, that the Depression was coming. Had the Depression hit in Japan yet, and was it difficult to find jobs in Japan when you graduated from college?

Jā. The influence of the Depression was deep. Almost two thirds of the graduates could not enter a company, and my advising professor recommended me to the Hitachi Company. Hitachi didn't have a department of vacuum tubes, so I declined and stayed in the engineering department for about one year. About that time Toshiba and NEC declined to give me a job, and JRC accepted.

Toshiba did not offer you a job?

No, but at that time Toshiba had bought the Langmuir patent for the hard-valved electron tube and almost dominated the manufacturing of those vacuum tubes. At that time radio broadcasting became very popular, and Toshiba offered only expensive vacuum tubes, so a radio set became more expensive if you bought a Toshiba tubes. Because of the radio boom, lots of factories (more than twenty) were building and they were producing less expensive vacuum tubes. At that time JRC was planning allowed by Toshiba to produce the amount of seven hundred thousand yen of vacuum tubes, but instead Toshiba could use all the JRC patents, cross-licensed: it was because of the Langmuir patent whose expiring date was extended. Toshiba required a much higher patent royalty from some small vacuum tube manufacturers in Japan. Toshiba had the right over the patent of the GE. So instead of GE, Toshiba wanted to get the patent royalty from various small vacuum tube manufacturers at the time.

I see. Toshiba had bought the patent rights, and they were going to exercise all the control over it that they could possibly get.

Jā. But I was very glad to know that I need not study that old Langmuir patent, and at least I could study more new technologies about the electron tube.

At that time I started to study Barkhausen-Kurtz oscillator and magnetron, but I was not sure at that time that such things would become useful for practical use, so I wanted to study microwave tubes, very high frequency tubes.

This was in the 1930s still? Soon after you had joined JRC?

Yes, I supposed the Langmuir patent would expire in the near future.

Microwave Medical Device

In 1935, or so, I was somewhat ill, something like pleurisy. I was acquainted with a medical doctor, and we became lifelong friends. He gave me the knowledge of Germany. In that country there was some electromagnetic therapy in practical use. He asked me, "Can you make such equipment?" I answered, "Yes, of course." He was a Doctor of Medicine and an assistant professor at the Imperial University of Tokyo. He told me how to use a microwave to heat up muscle [tissue], to use in therapy sessions.

At that time (in 1935) the Langmuir patent had already expired, so JRC did not have to pay any royalties to Toshiba. There were excessive of the therapy equipment orders compared with production capability and JRC could get a lot of money for orders of the apparatus of the wireless communication equipment.

Just for this medical apparatus?

There was such demand for this medical product that it was at least as successful as the military and marine products that were being developed by the company? Is that the thrust of this?

The rate of profit for the medical product was very high, but the total sales of the product was very low, compared with that of the military and marine products.

JRC had a good connection with the military authority because JRC was one of the most important military suppliers. It was also because a key person of the Navy was his elder brother, Yoji Ito.

As JRC got a lot of money, the president of JRC at that time asked me to take some three years' vacation, or so, to go to some foreign company that I liked. I thought that I would go to Germany at that time because Telefunken already had some patent relations with JRC. But the president opposed my going to Telefunken because Telefunken was under the control of the German military and Telefunken would decline to show the technology. Anyway, I insisted on going to Germany.

So the three years were as a reward for getting this very profitable order?

Germany and Telefunken

Jā. The negotiation with Telefunken was not easy. It took about three months, but eventually I was permitted to go to Telefunken.

Jā. 1937. That was maybe three or four years before the start of World War II.

Not that much before, because in 1938 Germany was already moving into countries.

So in 1937 maybe some connection between Japan and Germany existed. The preparations for war were underway. I studied at Telefunken for a year and a half learning about transmitting vacuum tubes for example, zirconium getter.

Getter means gas-absorbing materials in a high vacuum envelope.

That was new technology for Japanese vacuum tube manufacturers. I brought it back from Germany. Until 1965, Japanese vacuum manufacturers used dead-copy of my getter.

Waseda University & Tube Research

Before we go on, could I ask you a couple of questions about your electronics background from a little earlier in your life? There are two questions. Could you describe in a little more detail what went on at the Kodakura research laboratory, at Waseda University and what you did and learned there?

I studied photo tubes in Waseda after graduation from university and before joining JRC. Just after I joined JRC I was in charge of the oscillation tube, or magnetron, or the ultra-short-wave tube. As for the magnetron, it was suggested by Kiyoshi Morita of the Tokyo Institute of Technology. (Morita was the advisor of Heitaro Nakajima when H. Nakajima wrote his graduate thesis.)

Morita, assistant at that time, at the Tokyo Institute of Technology, was preparing his doctor's study. His topic was the short-wave tube. He ordered JRC to make a prototype tube or experimental apparatus. The magnetron. He became later professor of the Institute.

During the 1930s, when you were studying these tubes, how was knowledge passed? Was there available literature from other countries? Was there another group of people within Japan that was studying these? How did you learn about these things?

I'm sorry no information exchange existed among the companies in Japan. Toshiba was the only one tyrant.

I’ll explain the reason. There is a book titled The History of Electron Tubes published in 1987 written in the Japanese language. I am one of the co-authors. At the time of making this book I asked the Toshiba people why Toshiba had no patent concerning electron tubes. JRC had so many original patents. The answer was that the vice-president of Toshiba came from GE, and Toshiba people were not allowed to make such new technology as vacuum tubes.

Is there a journal literature in English or German? If there is, is it available? If that journal literature is available, does it tell you the things that you need to know, or do you need to have know-how about building these tubes that wouldn't be in the scientific literature? Those are the kind of things that I would like to know.

Some journal literature was available to the JRC Company. I read German journals everyday. Of course, some books from the United States would be available at that time, but I already forgot them.

Magnetron Development

Maybe we should continue then with the story.

Morita made a drawing of the magnetron and asked me to have JRC build it. I was very interested in such things, and also my brother Yoji Ito showed interest. He was in a Naval Research Institute. He was studying the Kennelly-Heaviside layer. He thought that some ultra high frequency, such as radar, would be useful because some reflection of electric wave would be possible.

So at that time Doctor Ito used to ask me for a weekly report. In 1934 he took leadership of the laboratory of vacuum tubes in the Naval Research Institute. At that time a special research contract was made between the Naval Research Institute and the JRC Company. My elder brother was not satisfied to invite only me, and he took some five or six vacuum tube workers from JRC to the Naval Research Institute at Meguro, Tokyo to build a group for manufacturing.

So the two groups were working independently.

But not completely independently very close coordination, and a very dutiful brother. Some differences though. At that time in my magnetron laboratory there were maybe three hundred persons — only for the magnetron. It was maybe the biggest magnetron factory in the world. At the Naval Research Institute, they discovered a special construction in which the frequency is very stable the stability is very good. That knowledge was fed back to JRC, so there was big and quick progress.

Finally JRC made such a device in 1939. It was a single-phase oscillator with ten-centimeter wavelengths. I believe this was the first one in the world and it had a five-hundred-watt output.

So this was the first one with that high an output?

Jā. It was also water-cooled.

At last the power went up to some hundreds of kilowatts or so. During the Second World War, many naval warships installed radar using our first developed water-cooled magnetrons.

That was earlier than the United States.

Radar and the Japanese Navy

But at that time there were so many opposite opinions in the Navy on using such radar. The reason why: with this thing and in a dark night with a light on, one could find a robber.

Maybe I should try to put it another way. The Japanese military authority, the Navy also, relied upon the optical weapons. Our optical technology was good, and they say that the Japanese have excellent eyes for watching with the optical aided tool (telescope, etc.). This was the main tool of the Navy, and they didn't appreciate the meaning of radio weapons. They looked down with scorn at such an idea. Yes, very skeptical.

Some top department of the Navy believed that radar was of no use very strange. They didn't believe in the electronics technology, I think. They didn't permit us to use the precious metals for the magnetron, such as cobalt for use in magnets.

The Navy wouldn't permit it?

No. Yoji Ito's group made about one hundred radars. They were not installed to big battle ships, but only small ships.

I see, so they were putting them into small ships that might have been fishing vessels.

Jā. At the last stage of the naval war in the dark night, the Japanese were worst hit by the United States. There must be some radar.

That is what made the Japanese Navy believe in radar? Is that what you are saying?

Taisnība. So in late 1943 or so, the Japanese Navy began to think there must be radar in warships. At that time JRC people were obliged to make radar devices but also the Navy must install the devices, so, for example, Sogo Okamura and Seibun Saito were ordered to —

And also Ito could not continue their research.

So not only did you have an urgent plan to build all this equipment, but there was an urgent plan to get it installed. You even had to take away very good researchers to do this job?

Yes, right. You know, the vessels were not in Japan, but the place was just fighting. The authorities dispatched not only the operators but also excellent researchers to such places to install them.

The Japanese Navy installed radar earlier than the USA. Midway through the operation, the Japanese Navy was very heavily damaged. But at that time, in our northern sea area, the Japanese Navy dispatched two or three ships, on which was installed microwave radar and also an ultra high frequency radar.

Do you know the history, the story of radar? Ships with radar were very successful in retreating from the Aleutian Islands. There were many troops on each small island, and they would go back to the ship and return.

It was very successful, but Midway.

In the Aleutian area there was no United States Navy. But on the return to Japan, there was a very hard storm, and every ship was.

At that time microwave radar was very useful to confirm which ship —

The shipmasters confirmed the usage of radar, but at the time, still some top departments of the Navy didn't think that the radar was useful. General Isoroku Yamamoto personally asked my elder brother Ito to make an entirely new weapon. Without it, it would be impossible for Japan to win the war.

Wartime Weapons Research

Ito thought of the atom bomb. He frequently went abroad, so he knew that the U.S. had forbidden in 1939 the export of uranium ore. So he realized that the U.S. must have surely been planning to develop the atom bomb. He was thinking that Japan had to do something to prepare for this. In January 1940 he was sent to inspect war-preparations in Europe.

Doctor Ito got a Ph.D. under Professor Barkhausen in Dresden. Ito had very good knowledge of the German language. For example, he translated a tale for children from German to Japanese.

He was very fluent, and could get the kind of information the German army was very reluctant to reveal. This included their top-secret projects such as the Wurzburg radar and so on. But he was scheduled to stay just for two months. He was blocked because of the war, so he had to take ten months to just return from Germany to Japan.

Around South America. There was no transportation connection between Germany and Japan.

Ito finally came back to Japan and tried to prepare the radar as well as the atom bomb. He couldn't get information about the atom bomb in Germany, but he discussed it with the physicists (Professor Nishina, etc.) in Japan. There was a meeting and finally the famous Japanese physicists decided that Japan could not develop the atomic bomb, and also that in the United States it would be impossible to develop the atomic bomb during war time. My brother Yoji Ito told me personally several times that the United States surely knew how to make the bomb.

The next story is about the destructive ray. The JRC started developing bigger, higher power magnetrons at the laboratory in 1941, trying to kill a rabbit.

Kill a rabbit, yes. Successfully. Because General Yamamoto was asking Ito to make a new weapon to win the war, Ito was thinking about making a several thousand-kilowatt magnetron. With this microwave he could hit the airplanes and make the engine dysfunction somehow. He was thinking about it. So he established a new laboratory, at Shimada in Shizuoka Prefecture, and gathered lots of famous physicists, such as Tomanaga, Kotani, to develop this kind of high-output magnetron. But he was not very successful. The biggest magnetron they developed was from JRC. One of four company men, Sozaburo Yamasaki, made a magnetron of 20 cm wavelength, having the output power of 100kW. A more powerful magnetron having the output power of 1000 kW was undergoing trials as of August 1945.

In 1953 I traveled around the world without a translator. At that time I went to London, and at the museum I found exactly the same thing, which was explained as: "This was invented by some Birmingham University people in 1940." 1940 was one year later than our invention. When I found this one in the London museum, there was an explanation that this magnetron led to Allied victory for the Second World War. After that, a symposium was held in England by IEE, but at that time there was no exhibition of this magnetron. I felt very strange — why was that thing not then exhibited? That was 1985. At that time there were so many kinds of parts exhibited in many rooms, but there was no exhibition of this magnetron. I felt very strange and asked everybody, but there was no answer. After that, when I sat alone, taking some tea, one old gentleman hit my shoulder by the hand and told me, "Your magnetron must have been stolen by the English King." That was an interesting thing.

Postwar Microwave Research

Maybe we should turn to the post-war period?

In the post-war period the general headquarters of the Occupation Force was very stringent in restricting what should be manufactured. In the case of the JRC Corporation, radio receivers and medical equipment could be produced, but not transmitters.

But three or four years’ later, wireless equipment for marine use was permitted. Therefore, we could produce transmitting vacuum tubes, so we could make a profit from that. Getter is gas-absorbing material in the vacuum tube to keep a high vacuum. At that time JRC was almost the only producer for that. Its market share was ninety-eight percent or so.

Jā. We had the orders also from the United States. In one year, two hundred million vacuum tubes were produced in Japan. So we could make money by means of getter production.

The difficulty was because of the GHQ, but they could survive because of getter.

At that time, only the JRC Corporation had microwave engineers. JRC had more than one hundred microwave engineers, and I had to consider what kind of jobs they must be doing.

Because you were now the manager of the research and development division?

Jā. I thought that if the microwave was used, multiple communications could be possible: for example, the telephone. At the first stage I considered multiplex telephone transmission by frequency modulation using a variable-frequency magnetron. But instead of frequency- modulated equipment, there was a patent by Professor Nagai of the Tohoku University, called PTM, which is pulse time modulation. We thought this type would be better, so we produced some trial equipment. We prepared to make some experiment between Mount Futago at Hakone near Fuji Mountain and the JRC Corporation in Mitaka that was heard by the General Headquarters and the Electric Communication Laboratory at that time also knew about that experiment.

So the experiment hadn't occurred yet, but word about this had been learned by both the Electric Communication Laboratory and by the GHQ?

At that time, transmitting electromagnetic waves had to be approved by the authorities. I went to the Electric Communication Laboratory to ask for the approval.

I see, so not only did they just happen to hear it, they had to have heard about it because they had to give their approval.

The president of the Electric Communication Laboratory did not understand the usage of electrical wave for communication. He thought it was nonsense to use such an unstable propagation wave for communication equipment. But at that time one very important person named Frank Polkinghorn of GHQ visited the Electric Communication Laboratory and found that there were no experiments about microwaves. He was surprised.

But at that time, the president answered. Of course, meanwhile we were ready to make the experiment, elsewhere.

I'm not sure I understand. So Polkinghorn says, "Aren't you doing any microwave research?" The president of the Electric Communication Lab says, "Oh, yes, we're going to do this and that, but we're not going to do it here." Is that it?

JRC tried to establish a test from Mount Hakone to JRC. To get the approval, the Electric Communication Laboratory had denied JRC the use of radio. But the GHQ officer named Polkinghorn, a civil communications service officer, asked the director of the Electric Communication Laboratory, "Why aren't you promoting microwave study?" Therefore the director of the ECL commanded JRC to stick a new label over the label of JRC, "Electric Communication Laboratory," and just go test.

So that it looks like ECL's rather than JRC's.

Taisnība. Basically the company was correct, but was much indebted to Mr. Polkinghorn of GHQ.

Fish Detection Equipment

This is now about fish finding. The history is that Navy men were using an ultrasonic submarine detection system and finding a strange phenomenon. It would identify a submarine but then the submarine would suddenly be gone, and they suspected that it would be a school of fishes. I heard the idea, and after the war I tried to use this idea to find a school of fish. I proposed this idea to GHQ to make an experiment. GHQ declined because this was related to weapons. But I insisted, "No, we can use even one sardine on the table, we are so short of fishes." I asked several times over two years, but GHQ declined very adamantly. I asked my elder brother, Dr. Ito, and he asked Dr. Kelly who saved the Japanese science and technology in post-war years. Ito insisted, so Kelly finally gave secret permission to me to do an experiment. When we did the experiment, we very clearly identified a school of fish. That experiment was successful. I really believe that Kelly was a sort of saint, that he saved Japanese science and technology. He was an intimate friend of my brother's, and there are words dedicated by Kelly when my brother died.

I see. This is Harry C. Kelly.

Harry C. Kelly, yes. That experiment was successful, but fishermen were skeptical at first. They thought that with their long experience, they knew how to find fish. But the experiment was successful. They could get a lot of fish, so the fishermen were enthusiastic about this device. This now costs fifty thousand, but at that time about a million Yen.

Demand was so great that we sold out of this device, so the fishermen had to wait. We exported it to the U.S. and many other countries.

A newspaper company was very interested and asked to come on board to witness the experiment. Then the findings of the successful experiment were broadcasted nation-wide. The first cost was a million yen, but we changed it from nickel oscillator to an oxide compound. BaTiO3. This is manufactured by Murata, a Japanese company, and was a Japanese invention. Because of this innovation, the cost went from a million to fifty or sixty thousand.

After that I visited RCA and the Bendix Company, and showed the device. That surprised the engineers at Bendix because they were just borrowing that device from the Navy to develop their weapons. Probably the Navy also kept that device.

Can I go back and ask a question about the experiment on the communications channel? Did that succeed, and did it result in a technology that was implemented in the country?

I think so. It was successful. It was the beginning of Japanese multiplex telecommunications by microwave.

But did it directly stem from this particular experiment, or did it come from some other direction?

The main topic for him was the oscillation of the magnetron wave and the reception of the magnetron wave.

I see. So you were far from being at a communications system at this point you were just showing proof of principles?

To show a transmission line using PTM method.

A certain doctor was interested in this fish-finding device and asked me to try to use this device to diagnose on the human body, the conditions of organs. I was at first very surprised but tried to develop a device. It was a very difficult process, and it took about twenty years. I was also asked to use this device for meteorological purposes. When did meteorological radar begin to be used in the United States?

All principal points have been covered. You know that this fish finding and diagnosis is the beginning of his present company, Aloka. Fish finding is one of the best sales of JRC, and it was a peaceful application. Communication was a peaceful application, the main peaceful application of radar technology. I think he contributed much not only to the military application, but also.

Also to these commercial ones.

Yes, and I think that he is very proud of that, being one of the real original developers of the magnetron technology.


Skatīties video: Thapki Pyar Ki. थपक पयर क. Ep. 62. Sakshi Gets Drunk. सकष न प शरब (Decembris 2021).